

EVALUATION OF NITROGEN AND CARBON SUPPLEMENTATION STRATEGIES FOR OPTIMIZING BIOMASS PRODUCTION DURING CULTIVATION OF CHLORELLA SOROKINIANA, STRAIN SLA-04

by

Matthew Jackson

PhD Defense Department of Chemical and Biological Engineering Center for Biofilm Engineering Montana State University

Monday, April 19, 2021 11:00 AM - 12:00 PM

Via Webex:

Department of Chemical & Biological Engineering

https://montana.webex.com/montana/j.php?MTID=mf0a327f8be1da7b44b009744e7b63aff

ABSTRACT: Expansion of commercial algae cultivation is constrained by costs of production associated with resource supply and the operation and maintenance of large open-air systems. High productivity by microalgae requires significant nitrogen and carbon inputs, which are expensive and can offset environmental benefits associated with biofuels and other bioproducts if industrially produced fertilizers or CO₂ are used. High-alkalinity cultivation using bicarbonate instead of CO₂ has become a hot topic in algal research. Highalkalinity algal systems are able to maintain relatively high concentrations of inorganic carbon in solution due to the improved mass transfer of CO₂ into solution from the air. In addition, high HCO₃⁻ concentrations can cause upregulation of genes associated with carbon fixation and nitrogen assimilation. The current research investigates use of an alkaliphilic isolate of Chlorella sorokiniana, strain SLA-04, for cultivation in batch systems using different nitrogen and carbon supply regimes, to improve the understanding of the physiology of this novel organism and ultimately, improve biomass production and resource demand of cultivation. Nitrate, ammonium, urea, and a combination of sources were compared using CO₂ and HCO₃⁻ supplementation during nitrogen replete growth. In addition, growth using nitrate as the sole nitrogen source was evaluated using five inorganic carbon and four mixotrophic (inorganic and organic carbon) supplementation strategies. Biomass productivity improved with the use of HCO_3^{-1} for conditions provided urea or a combination of nitrogen sources, but no significant difference was observed when nitrate or ammonium were used. Use of bicarbonate for cultivation increased productivity relative to other inorganic carbon conditions that did not receive continued supplementation during nitrogen deplete growth, however continued CO₂ supplementation during nitrogen deplete growth resulted in a significant increase in productivity. From an economic perspective these conditions have limited application due to their demand of CO₂. The use of additional bicarbonate supplementation during nitrogen deplete growth did not serve as an equivalent alternative for continued CO₂ supplementation during this growth stage. Glucose P.O. Box 173920 supplementation improved productivity for inorganic carbon conditions that were not Bozeman, MT 59717-3920

214 Roberts Hall www.chbe.montana.eduSupplemented continuously with CO2. The combination of glucose and continuous CO2 supplementation caused a reduction in biomass production, suggesting a negative

406-994-2221 Tel 406-994-5308 interaction. Fax Email ChBE@montana.edu